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Abstract The ever-increasing robustness and reliability of flow-simulation methods have consolidated CFD as
a major tool in virtually all branches of fluid mechanics. Traditionally, those methods have played a crucial role
in the analysis of flow physics. In more recent years, though, the subject has broadened considerably, with the
development of optimization and inverse design applications. Since then, the search for efficient ways to evaluate
flow-sensitivity gradients has received the attention of numerous researchers. In this scenario, the adjoint method
has emerged as, quite possibly, the most powerful tool for the job, which heightens the need for a clear understanding
of its conceptual basis. Yet, some of its underlying aspects are still subject to debate in the literature, despite all the
research that has been carried out on the method. Such is the case with the adjoint boundary and internal conditions,
in particular. The present work aims to shed more light on that topic, with emphasis on the need for an internal
shock condition. By following the path of previous authors, the quasi-1D Euler problem is used as a vehicle to
explore those concepts. The results clearly indicate that the behavior of the adjoint solution through a shock wave
ultimately depends upon the nature of the objective functional.

Keywords Adjoint method · Adjoint boundary conditions · Integral approach · Realizable flow variations

1 Introduction

The impact the use of CFD has made in so many branches of fluid dynamics is undeniable. In particular for the
aerospace industry, it provides a very cost-effective means of analyzing different flow-geometry configurations.
More recently, the development of inverse design and optimization methods has opened up new possibilities. On
combining those methods with CFD codes, one can specify elaborate design goals and search for configurations
that meet them.

The works by Lions [1], Pironneau [2–4], Jameson [5–7], Salas [8,9], Giles and Pierce [10,11] and many others
[12–14] have established the adjoint method as a major contribution in the field. It offers an extremely attractive
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2 E. V. Volpe, L. C. de Castro Santos

capability, which is to compute sensitivity gradients at a cost that is largely independent of the number of design
variables. It all hinges upon the solution of the equations governing the flow and the so-called adjoint equations.

It is worth noting that the solution of the adjoint problem incurs roughly the same computational costs as the
flow simulation does. Even so, there are several works that aim at further reducing those costs. In [15], the one-shot
method developed by Salas et al. [8,9] is further explored to reach a faster rate of convergence, which is achieved
by taking advantage of a multi-grid scheme. On following a similar one-shot approach, Beux and Dervieux [16]
analyze the influence of the geometry parameterization, by considering a different number of parameters in each
cycle of the multi-grid scheme.

Other approaches have also been pursued successfully. Apparently, though, none of them seems to allow the
same flexibility with regard to the flow-physics model and the measure of merit as the adjoint method does. Such
is the case with automatic differentiation [17,18], which relies on software tools to differentiate a CFD code and,
thus, to evaluate sensitivity gradients. Despite all the effort that has been put into developing appropriate tools for
the job, the differentiation procedure remains a tedious, cumbersome, task.

Over the years, several application examples have been reported in the literature for the adjoint method. Ranging
from nuclear-reactor thermo-hydraulics to atmospheric sciences [14,19], they span a wide variety of interests. Aero-
dynamics applications, in particular, range from the design of single [20] and multi-element profiles [21,22], to
wing-shape optimization [23,24] and turbo-machinery design [25]. There have also been some successful applica-
tions of coupled aerodynamic-structure formulations, such as in [26]. More recently, several developments regarding
unsteady problems have been reported in the literature as well [27–29].

Not only can the adjoint variables be used to evaluate functional gradients, as in an optimization procedure, but
they also enable one to compute these functionals to a higher order of accuracy [30–33]. An entirely different class
of applications has evolved around this idea for error analysis [34,35]. A closely related topic is grid adaptation
based on functionals [36,37]. It can be shown that the usual spatial (or h) adaptation schemes, which are based on
flow variables, have limited power to attain the levels of accuracy functionals are required to meet, in applications
such as drag minimization [35,38].

The choices for a gradient-based optimization procedure can be summarized as follows: On taking the set of
governing equations as a nonlinear operator R over a set of flow variables U , one can write [39]:

R(U ) = 0. (1)

By linearly perturbing the geometry, a linearized sensitivity equation can be constructed such that:

Lu = f. (2)

Here L is the linearized operator, u the sensitivity of the flow variables and f accounts for the remaining terms
resulting from the geometry perturbation. The nonlinear optimization problem can be represented as a functional
J (U ) over the domain. When linearly perturbed, it can be written as an internal product:

I (u) = 〈g, u〉, (3)

where I (u) ≡ δ J (U ). At this point there are several choices:

– the classical brute-force approach, which is to perturb directly the nonlinear flow equations (1), and solve the
problem N times, where N is the number of design variables, and recompute J (U );

– develop a code to solve for the sensitivities (2), either directly or by using an automatic differentiation tool, and
evaluating (3);

– follow an adjoint approach.

The latter option implies augmenting the functional by imposing (2) as a constraint, by means of continuous
Lagrange multipliers v. It leads to:

I (u) = 〈g, u〉 − 〈v, Lu − f 〉. (4)

As long as (2) holds, Eq. 4 is equivalent to (3). The adjoint operator L∗ is then defined by the relation:

〈v, Lu〉 = 〈L∗v, u〉. (5)

123



Boundary and internal conditions 3

On assuming that u, v satisfy homogeneous boundary conditions, and replacing (5) in Eq. 4, one obtains:

I (u) = −〈L∗v − g, u〉 + 〈v, f 〉. (6)

As long as the adjoint equation is satisfied, one has:

L∗v = g (7)

and the flow-variables sensitivities are removed from the functional sensitivity, which leads to:

I (u) = 〈v, f 〉 (8)

Despite its theoretical simplicity, there are several implementation issues regarding the development of adjoint
codes:

– it may be considerably difficult to extract the adjoint operator L∗ analytically from the original equations;
– the boundary conditions for u, v are generally non-homogeneous, thus bringing additional integrals in Eq. 8;
– the boundary conditions for v have a non-intuitive mathematical behavior, and should be carefully considered,

so as to fully remove the problem dependence on flow sensitivity.

These aspects have led researchers to follow two different alternatives: the discrete or the continuous formulation.
In the discrete approach, instead of handling the analytical development, the discretized operator L is explicitly

constructed in matrix form. The discrete adjoint operator L∗ is the matrix transpose of the discrete sensitivity
operator L . In [40], one can find a comparison between the discrete and continuous approaches for Euler equations.
In terms of optimization effectiveness there is not a sizable difference.

The generation of the adjoint discrete problem, although straightforward, can also be cumbersome. In order to
facilitate such tasks, automatic differentiation techniques have also been applied in the development of discrete
adjoint codes [41,42]. There is still the non-trivial computational work in solving the very large (fortunately sparse)
linear system [43].

In the continuous approach, the adjoint operator is obtained analytically for each PDE. Similarly, the boundary
conditions for the adjoint equations are derived for each choice of flow boundary conditions. An adjoint continuous
solver for the Navier–Stokes equations was developed by Jameson et al. [40,44] and successfully used in inverse
design and drag minimization. The only boundary conditions needed for external aerodynamics are far field and
wall. For a wide variety of problems, other boundary conditions are needed. Therefore it is important to focus on
their derivation.

A clear understanding of the boundary conditions is an important issue in the development of a continuous
adjoint problem. The boundary conditions of the primal, (2), and dual, (4), problems are related in such a way that
the characteristics of each are reversed. Depending on the nature of the flow, the number and specifications of each
characteristic have to be matched, so as to retain consistency. The topic will be explored in detail below.

As noted by Giles and Pierce [39]: “there is little discussion of the properties of the adjoint solutions themselves”,
which is something that can only be achieved by following a continuous approach. Initially in [39], and much latter
in [34], those authors state the need of an internal boundary condition, with the specific purpose of handling the
shock discontinuity. While that condition is strictly required for the well-posedness of the problem, the adjoint-
solution behavior through the shock wave depends on the nature of the objective functional. It will be shown below
that such dependence is more general than what was anticipated by those authors, on the basis of their particular
choice of functional.

To better illustrate the importance of that topic, it is instructive to quote a passage from [45], which reads:

In Iollo et al. (1993), it is suggested that v = 0 could be imposed at the shock, but this over-constrains the
adjoint problem, in addition to contradicting (2.5). Cliff et al. (1996, 1998) conclude that there is a ‘shock’ in
the adjoint variables at the shock location, having proved that the adjoint variables undergo a change of sign
across the shock. However, as this change of sign is entirely due to the non-standard coordinate system they
employ in formulating the augmented Lagrange, the conclusion that the adjoint variables are discontinuous
at the shock is misleading.
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That interpretation of the adjoint internal condition seems to prevail in the literature. Venditti and Darmofal have
developed a finite-element discrete adjoint implementation of the analytical work of Giles and Pierce and use it to
explore both grid adaption and the super-convergence of functionals [36–38,46]. In their line of work they have
made use of the same linear functional as Giles and Pierce [45], which does not reveal any discontinuity at the shock
location. In his doctoral thesis, Xie [47] follows the same approach of Giles and Pierce. However, he has observed
a shock discontinuity, and interpreted it as was denied in [45].

The contribution of this paper is to further explore and clarify some issues regarding the boundary and internal
conditions for the adjoint equations, while focusing on the continuous formulation of the method. The relation
between the objective functional and the adjoint-solution behavior through a shock wave is considered in detail.
On following the steps of [37,39] and [47], the quasi-1D Euler equations are used as a vehicle for the analytical
development. Yet, departing from previous references, the whole problem is formulated for a generic objective
functional.

In this framework, the need for an internal condition at the shock wave is verified. The continuity of the adjoint
variables is imposed at that location, just as Giles and Pierce had proposed [39]. Our findings reveal that, although
the adjoint variables themselves meet the continuity condition as expected, their gradient exhibits a discontinuity.
Furthermore, the strength of that discontinuity is directly related to the nature of the objective functional. The linear
functional that has been picked by those authors is shown to be a particular case, for which the adjoint variables
smoothly cross the shock wave. This fact seems to have been misinterpreted by some authors in the past, which led
to contradictory conclusions of some references.

The test results clearly demonstrate the validity of the present theoretical claims. An alternative continuous
theoretical development is pursued and a novel interpretation of some of the previous conclusions are drawn from
its results.

2 Statement of the problem

Owing to its simplicity, the classical problem of Euler flow through a nozzle with a variable cross-section is chosen
as an appropriate vehicle to explore the method’s underlying concepts. In particular, for a slowly varying cross-
sectional area, the flow can be conveniently modeled by the well-known quasi-1D Euler equations [48, Chap. 2],
[49, Sect. 16.4],
∂(SQ)
∂t

+ ∂(SF)
∂x

= S′H, (9)

where S = S(x) denotes the cross-sectional area of the nozzle, and S′ = dS/dx represents how the area varies
lengthwise. The quantities Q and F represent the state variables and flux vector in conservative form, respectively,
and the term S′H on the the RHS accounts for the effects of area change on the balance equations:

Q ≡
⎛
⎝
ρ

ρu
ρet

⎞
⎠ ; F ≡

⎛
⎝

ρu
ρu2 + P
(ρet + P)u

⎞
⎠ ; H ≡

⎛
⎝

0
P
0

⎞
⎠. (10)

The ideal-gas relation for pressure and the total energy per unit of mass (et )
1 closes the set (9):

P = (γ − 1)ρ

[
et − u2

2

]
. (11)

As an illustrative example of a measure of merit, we define the following functional

I =
l∫

0

g(V) dx, (12)

1 et = (ei + u2/2), where ei represents the thermodynamic specific internal energy.
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Boundary and internal conditions 5

where g(V) represents a generic scalar function of the primitive state variables V = (ρ, u, P)T . The integral is
taken over the whole length of the nozzle, l, and the objective is to find the geometry S(x) that minimizes the
functional I . On computing the variation of (12), one must take into account the possible occurrence of a normal
shock wave within the flow domain. Hence, it is convenient to split the integration into two parts, upstream and
downstream of the shock location xs [10,39,45]. This leads to

δ I =
x−

s∫

0

∂g

∂V

T

· ∂V

∂Q
· δQ dx − [g(V )]

x+
s

x−
s
δxs +

l∫

x+
s

∂g

∂V

T

· ∂V

∂Q
· δQ dx, (13)

where δxs represents a shift in the shock-wave location. The rationale behind (13) is that any changes in the flow
field, δQ and δxs , are brought about by variations in a set of control parameters, which has yet to be defined.

On assuming that the nozzle geometry can be accurately represented as a function of x with a set of parameters ak ,
S(x; ak), one could attempt to minimize I by adjusting that set. Then the ak would represent the control parameters,
and the most important piece of information would be the sensitivity gradient ∂ I/∂ak , which should be computed
on the basis of (13). The problem with that approach lies in the dependence of the flow solution on those parameters,
which is not usually known in closed form. As a result, an estimate of ∂Q/∂ak would require several solutions of
the equations governing the flow (9), one for each variation δak , taken separately. Clearly, as the number of control
parameters grows, the cost of such computations is bound to become prohibitive.

A common characteristic of all the simulations required to estimate ∂Q/∂ak is that, for each individual variation
δak , there must correspond a realizable solution to the governing equations. Hence, if one could constrain the
variations to the space of realizable solutions, a priori, then, perhaps, one could eliminate the need for expensive
computations of ∂Q/∂ak to estimate the sensitivity gradient.

The adjoint method opens up such a possibility. Originally proposed by Jameson [5,6] for aerodynamic applica-
tions, it makes use of concepts from control theory to achieve that goal. In essence, it imposes the flow-governing
equations as constraints on the optimization problem and, on doing so, it precludes unrealizable solutions. For the
application in hand, one is mostly interested in steady flow conditions. Therefore, the steady form of (9) is imposed
on (12) as a non-holonomic constraint, thus leading to the augmented functional [10,39,45]

I =
l∫

0

g(V) dx +
l∫

0

�T ·
(
∂(SF)
∂x

− S′H
)

dx +�T
s · [SF]

x+
s

x−
s

︸ ︷︷ ︸
Ic

. (14)

The third term on the RHS of (14) imposes the Rankine–Hugoniot (R–H) relations on the shock wave; the vectors
�T and�T

s are the corresponding Lagrange multipliers. The symbol Ic is used to denote the whole set of constraints.
The variation of the first integral in (14) is obviously given by (13), whereas that of term Ic involves the variations

of the constraint equation and of the R–H relations. The former yields

∂

∂x
δ(SF)− δ(S′H) = 0, (15)

where the variations δ(SF) and δ(S′H), are given by

δ(SF) = SAδQ + FδS, δ(S′H) = S′BδQ + HδS′. (16)

Both flow solution and geometry variations are implicitly assumed to be caused by control-parameter changes, but
they are otherwise taken to be independent of each other. The symbol A represents the matrix of the flux Jacobian
and B represents the Jacobian matrix of (9) RHS term:

A = ∂F
∂Q

=
⎛
⎜⎝

0 1 0

(γ − 3) u2

2 (3 − γ )u (γ − 1)

(γ − 1)u3 − γ et u γ et − (γ − 1) 3u2

2 γ u

⎞
⎟⎠ , (17)
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6 E. V. Volpe, L. C. de Castro Santos

B = ∂H
∂Q

= (γ − 1)

⎛
⎝

0 0 0
u2

2 −u 1
0 0 0

⎞
⎠ . (18)

As with the flux vector F, one can easily show that H is homogeneous of degree one with respect to Q. Hence, the
relation H = B.Q holds as an exact result. The R–H term also depends on the shock-wave location xs , in addition
to the geometry S and the state variables Q, thus its variation leads to

δ [SF]
x+

s

x−
s

=
[
∂(SF)
∂x

]x+
s

x−
s

δxs + [SAδQ]
x+

s

x−
s

+ [FδS]
x+

s

x−
s

= [
S′H

]x+
s

x−
s
δxs + [δ(SF)]

x+
s

x−
s
. (19)

Here, use was made of the steady form of the governing equation (9), to substitute for the flux derivative in the
algebra. The first expression in (16) has also been used to collect the terms of δ(SF).

The first step to obtain the variation of Ic is to integrate the constraint functional by parts and to substitute (19)
for the variation of the R–H term

δ Ic =
[
�T · δ(SF)

]x−
s

0
−

x−
s∫

0

∂�T

∂x
· δ(SF)+�T · δ(S′H) dx +�T

s ·
{[

S′H
]x+

s

x−
s
δxs + [δ(SF)]

x+
s

x−
s

}

+
[
�T · δ(SF)

]l

x+
s

−
l∫

x+
s

∂�T

∂x
· δ(SF)+�T · δ(S′H) dx . (20)

The terms that involve the shock-wave position can be regrouped as follows

δ Ic =
[
�T (x−

s )−�T
s

]
· δ (SF)x−

s
−
[
�T (x+

s )−�T
s

]
· δ (SF)x+

s
+�T

s · [S′H
]x+

s

x−
s
δxs +

[
�T · δ(SF)

]l

0

−
x−

s∫

0

[
∂�T

∂x
· δ(SF)+�T · δ(S′H)

]
dx −

l∫

x+
s

[
∂�T

∂x
· δ(SF)+�T · δ(S′H)

]
dx . (21)

The first two terms on the RHS of (21) involve differences between the R–H Lagrange multipliers,�s , and the�,
where the latter are evaluated at the shock location. According to Giles and Pierce [10,39,45], these terms prompt
the need for an internal boundary condition that should be imposed on the �, at that location. Then, on making

�(x−
s ) = �s = �(x+

s ), (22)

those two terms drop from (21), and one imposes the continuity of the Lagrange multipliers through the shock wave.
Then, on introducing the variations (16) into the above equation and collecting like terms, one has

δ Ic = �T
s · [S′H

]x+
s

x−
s
δxs +

[
δQT SAT�

]l

0
+
[
δSFT ·�

]l

0

−
x−

s∫

0

[
δQT ·

(
SAT ∂�

∂x
+ S′BT�

)
+ δSFT · ∂�

∂x
+ δS′HT ·�

]
dx

−
l∫

x+
s

[
δQT ·

(
SAT ∂�

∂x
+ S′BT�

)
+ δSFT · ∂�

∂x
+ δS′HT ·�

]
dx . (23)

As a result of the continuity of � and the fact that physical variables only undergo finite jump discontinuities
through a shock wave, one can perform the integrations over the whole length of the nozzle, from 0 to l, as opposed
to splitting them at the shock location, on the understanding that the equations governing the flow hold there in the
sense of weak solutions, only. Hence, the only remaining term that is directly related to the R–H conditions is the
one that multiplies the shock-wave shift δxs .
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Boundary and internal conditions 7

Finally, the variation of the augmented functional (14) is obtained by adding the two equations (13) and (23) and
collecting like terms,

δ I =
[
δQT SAT�

]l

0︸ ︷︷ ︸
(a)

+
l∫

0

δQT ·
[(

∂V

∂Q

)T
∂g

∂V
− SAT ∂�

∂x
− S′BT�

]
dx

︸ ︷︷ ︸
(b)

+
{
�T

s · [S′H
]x+

s

x−
s

− [g(V )]
x+

s

x−
s

}
δxs︸ ︷︷ ︸

(c)

+
[
FT ·� δS

]l

0︸ ︷︷ ︸
(d)

−
l∫

0

[
FT · ∂�

∂x
δS + HT ·� δS′

]
dx

︸ ︷︷ ︸
(e)

. (24)

The resulting equation represents the variation of the measure of merit subject to the chosen constraints. That is, it
should satisfy the Euler equations in steady form, as well as the R–H relations. A split into geometric and physical
variations can be recognized at once, since the terms (d) and (e) involve only the former, whereas (a), (b) and (c)
involve only the latter.

The variation split can be used to advantage in eliminating the δQ from the above equation. In principle, one can
make use of the expression within brackets in (b) as a means to solve for�. That can be accomplished by requiring
it to satisfy the PDE

− SAT ∂�

∂x
− S′BT� + ∂V

∂Q

T ∂g

∂V
= 0 (25)

on both sides of the shock wave, thereby suppressing the integral from (24). Boundary conditions for this PDE are
obtained from term (a), along with the continuity condition (22). It will be shown below that these conditions can
be derived in such a way as to ensure that the problem is well-posed and that the contribution of term (a) to the
total variation is zero. The term (c) will also be shown to have no contribution to δ I .

Under these circumstances, the total variation reduces to the sum of (d) and (e), both of which involve only area
variations. In essence, then, on solving (25) for � and substituting the result in the expression of δ I , one is impli-
citly constraining that variation to the space of realizable solutions. As a result, one should be able to estimate the
sensitivity gradient without having to resort to expensive computations of individual design-parameter variations.
This could be done on the basis of a simplified expression, instead.

δ I =
[
FT ·�δS

]l

0
−

l∫

0

[
FT · ∂�

∂x
δS + HT ·� δS′

]
dx . (26)

Equation 25 corresponds to the adjoint equation for the problem. However, it can be cast in a more instructive
form, which stresses its similarity to the equation governing the flow (9). The importance of such a similarity is
twofold: not only does it indicate an approach to solving the adjoint equation; but, more importantly, it gives us
guidance in deriving appropriate boundary conditions to impose on it.

3 The adjoint equations

The similarity between the adjoint PDE (25) and the Euler equation (9) becomes apparent when one writes the
latter in terms of the Jacobian matrix A and makes use of the identity H = B.Q. On introducing these results into
the steady form of (9) and comparing it to (25) one gets

−SAT ∂�

∂x
− S′BT� = − ∂V

∂Q

T ∂g

∂V
≡ − ∂g

∂Q
, (27)

SA
∂Q
∂x

− S′ (B − A)Q = 0. (28)
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8 E. V. Volpe, L. C. de Castro Santos

As can be seen, both equations share a similar structure. The only differences are in the sign of the flux term and
the non-homogeneous term on the RHS of (27). The origin of the latter can be traced back to the variation of the
objective functional in (13). Whereas the terms on the LHS of (27) all come from the variation of the governing
equation (23) and bear no influence of the objective functional.

The apparent similarity between the two PDEs opens up the possibility of using the same body of knowledge that
has been developed for the Euler equation to tackle the adjoint equation. The hyperbolic character the Euler equation
exhibits in the time–space domain is what ultimately determines flow boundary conditions. Given the structure of
(27), the same feature could be shared by the adjoint equation if only one could postulate a time dependence for the
variable � similar to Q. In principle, that could be accomplished by simply adding a time derivative to the LHS of
(27). This step leads to the following PDE

∂(S�)

∂t
− SAT ∂�

∂x
− S′BT� = − ∂g

∂Q
, (29)

∂(SQ)
∂t

+ SA
∂Q
∂x

− S′ (B − A)Q = 0, (30)

which is paired with the full Euler equation for comparison. In view of the relation between the two, the flow
and the optimization are usually referred to as primal and dual problems, respectively [31]. For its role in the
latter, � is often referred to as the co-state vector in the literature. The same terminology shall be adopted
henceforth.

Clearly, one is only interested in the steady solution to (29), which actually recovers (27) as the time derivative
vanishes. Equation 29 is just a model equation, but it does fulfill its role regarding the hyperbolic character. In its
final form, the adjoint equation (29) shares the same characteristics as the Euler equation (30), but for a reversal of
sign of the characteristic velocities. Quite different from the latter, though, the adjoint equation is linear. For neither
the flux Jacobian A nor the matrix B depend on �.

An immediate consequence of the adjoint equation linearity is the fact that singularities can only travel along
characteristics, and they must be borne by the Cauchy data [50,51, Sect. 3.8]. Then, there is no reason for the � to
develop jump discontinuities anywhere in the solution domain, unless they are brought in by the boundary or initial
conditions. That is the case of the sonic line singularity (u − a) = 0, which is reported in the literature [52].

In a strict sense, the shock wave divides the flow field into two solution domains for the adjoint equation, and
they are connected by the continuity condition (22). A numerical method, however, may handle that connection in
either of two ways: by enforcing (22) explicitly at the shock location, as in a shock-fitting approach; or, alternatively,
by treating the shock as a discontinuity within the domain, in a fashion that is quite similar to the shock-capturing
methods of flow simulation. The second option is usually preferred over the first one because it should, in principle,
involve a simpler implementation of the method.

In any case, the behavior of the co-state variables � through the shock wave can be analyzed with the aid of
the adjoint equation (29) and of the term (c) in the total variation (24). That term imposes a condition on a control
volume of infinitesimal thickness that encloses the shock wave, and it implies

(
g+ − g−) = �T

s ·
[(

S′H
)+ − (

S′H
)−]

, (31)

where the symbols ( )− and ( )+ stand for conditions on the upstream and downstream sides of the shock wave, x−
s

and x+
s respectively. On substituting the identity H = BQ in (31), it yields

(
g+ − g−) = �T

s ·
[(

S′BQ
)+ − (

S′BQ
)−]

. (32)

On accounting for the fact that � is assumed to be continuous through the shock wave, and on making use of the
stationary form of the adjoint equation (29), the RHS of (32) can be written as
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Boundary and internal conditions 9

(
g+ − g−) = −

(
S
∂�

∂x

T

AQ

)+
+ ∂g

∂Q

∣∣∣∣
T

+
· Q+ +

(
S
∂�

∂x

T

AQ

)−
− ∂g

∂Q

∣∣∣∣
T

−
· Q−. (33)

Finally, by making use of the identity F = AQ and of the R–H condition across the shock wave (SF)+ = (SF)−,
one gets

(
g+ − g−) = + ∂g

∂Q

∣∣∣∣
T

+
· Q+ − ∂g

∂Q

∣∣∣∣
T

−
· Q− −

(
∂�

∂x

∣∣∣∣
T

+
− ∂�

∂x

∣∣∣∣
T

−

)
· (SF)+ . (34)

The above equation relates the co-state variables to the nature of the objective function g(V ): If this function
is homogeneous of degree one with respect to Q, then the first derivative of � must be continuous through the
shock wave, which, in turn, implies that the co-state variables are continuous of class C1. If that is not the case,
then the first derivative of � undergoes a jump discontinuity through the shock, the intensity of which is given
by (34).

3.1 Boundary conditions for the adjoint equation

As was discussed above, the steady solution to the adjoint equation (29) should allow one to eliminate the integral
(b) from the the total variation δ I (24). Boundary conditions for that equation can be derived from (a), which would
then be the only remaining term in the variation that involves δQ:
[
δQT SAT�

]l

0
=
(
δQT SAT�

)
l
−
(
δQT SAT�

)
0
. (35)

Besides being consistent with the PDE (29), these boundary conditions should ideally eliminate the above terms
from the total variation δ I , thus suppressing its dependence on the state vector variation.

The terms in (35) involve both state and co-state vectors at the boundaries of the flow domain. The variation
of the state vector is governed by flow boundary conditions, which impose relations among its components, δqi .
Boundary conditions for the ψi should follow the same reasoning, given the similarity between the PDEs. Only
the sign reversal of the characteristics leads to boundary conditions that are complementary to those of the primal
problem. As will be shown below, it is this relation between primal and dual boundary conditions that ultimately
enables one to eliminate all terms in (35) from δ I .

The rationale behind the adjoint boundary conditions is best conveyed on replacing the terms A and δQ by their
counterpart in (16), AδQ = δF. That leads to an alternative form for (35)
[

SδFT ·�
]l

0
=
(

SδFT ·�
)

l
−
(

SδFT ·�
)

0
. (36)

Both terms on the RHS of (36) involve scalar products between the co-state variables� and flux variations δF at the
boundaries of the flow domain. The nullity of these products implies the � should be orthogonal to all realizable
flux variations δF—the term realizable, here, refers to those that satisfy the equations governing the flow. This
way, the co-state variables may be thought of as generalized constraint forces that impose mass, momentum and
energy conservation on all flux variations at the boundaries. Therein lies a possible interpretation of the� and their
boundary conditions.

Given the way the variational problem is constructed, the same interpretation of the co-state variables should
actually hold throughout the flow domain, as opposed to just the boundaries. It suffices to recall that δQ (term b in
(24)) must be realizable, but it is otherwise arbitrary. Hence the only way to make that integral null is to take � as
the solution to the adjoint equation. Within this framework, the rationale behind the method is akin to minimizing
the virtual work of the generalized constraint forces �, thereby ensuring that the system trajectory in state space is
fully realizable. Although these ideas do not have any direct bearing on the algebra, they can guide us through the
derivation that follows.

As was mentioned above, the flux Jacobian of the adjoint equation (29) is the same as that of the Euler equation,
except for the transposition and sign reversal. Therefore, it has the same characteristic velocities, but with opposite
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u

t

x

t

x

0

0 l

l

(a)

(b)

(c)

Fig. 1 Quasi-1D nozzle flow. a Physical space, with sonic conditions at the throat and a normal shock wave in the divergent portion—rep-
resented by a double solid line. b Flow characteristics: solid line , u; dotted line, (u +c); dash–dot line, (u −c). c Adjoint characteristics:
solid line, −u; dotted line, −(u + c); dash–dot line, −(u − c)

signs: −u,−(u + c),−(u − c). Figure 1 illustrates the situation in an arbitrary quasi-1D nozzle. It depicts both
primal and dual characteristics under different flow conditions.

Boundary conditions for supersonic flow at an entrance impose constant values on all state vector components
qi . That, in turn, implies that all of their variations are zero: δqi = 0. Since the adjoint characteristics run in the
opposite direction, the co-state variables should not be imposed there. As a result, the corresponding ψi boundary
conditions are free, but the nullity of δQ ensures that

(
δQT SAT�

)
0 = 0 at that boundary. To put it another way,

δQ = 0 ⇒ δF = 0. Therefore, the orthogonality condition holds for any vector �.
At a supersonic exit, no boundary conditions are imposed on Q and, thus, all variations δqi are left unspecified.

However, the reverse sign of the adjoint characteristics implies that all ψi must be imposed boundary condi-
tions there. In principle, these could be picked so as to ensure that

(
δQT SAT�

)
l = 0 at that boundary. This can be

accomplished by simply imposing homogeneous boundary conditions on the co-state variables:ψi = 0. Here again,
the unspecified δqi imply that all δF are allowed, hence the need for imposing homogeneous boundary conditions
on �.

Boundary conditions for subsonic flow need more careful consideration. In that case there are characteristics
that run both ways, upstream and downstream, and flux variations at the boundaries are constrained. The idea is
to evaluate the realizable δF in each case, and then to find out the � that are orthogonal to these variations. For
simplicity, the algebra will be done in terms of δQ, but the correspondence between the two forms is immediate,
since it is given by a simple relation, δF = AδQ.

At a subsonic entrance the boundary conditions impose the flow direction, along with constant values for the
stagnation pressure Po and temperature To, thereby implying that their variations are zero. Owing to the quasi-1D
character of this particular application, only the latter two quantities are considered. On writing them in terms of
the state variables qi , one gets

To = (γ − 1)

2γ Rq2
1

[
(1 − γ )q2

2 + 2γ q1q3

]
, (37)
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Po = (γ − 1)
(
2q1q3 − q2

2

)
2q1

[
1 + q2

2

γ (2q1q3 − q2
2 )

] γ
γ−1

, (38)

and, on computing their first variations and collecting the δqi , they yield

δTo = γ − 1

γ Rρ

{
γ δq3 − u(γ − 1)δq2 −

[
etγ − (γ − 1)u2

]
δq1

}
, (39)

δPo = 1

2(γ − 1)u2 − 4γ et

{[
1 + u2

γ (2et − u2)

] γ
γ−1 [

u(uδq1 − 2δq2)
(

− 2et (γ − 2)γ

+(γ − 1)2u2
)

+ 2
(
−2et (γ − 1)γ + (1 + (γ − 1)γ ) u2

)
δq3

]}
. (40)

Finally, on imposing the condition of zero variation on To and Po, in (39) and (40), and on solving them as a set for
two out of the three components δqi , one obtains two linear expressions involving these variations.

δq2 =
[
(2 + γ (γ − 1))u

2
− etγ (γ − 1)

u

]
δq1, δq3 =

[
(γ − 1)2u2

2
− etγ (γ − 2)

]
δq1. (41)

The two equations of (41) correspond to the physical boundary conditions that are imposed on To and Po. They give
the variations of two state variables in terms of the third, which is left unspecified. For simplicity, we have chosen
to write δq2 and δq3 in terms of δq1, but the relations can be expressed differently. In any case, these equations
represent the realizable δQ at a subsonic entrance, and the δF thereof.

The corresponding values of � at such a boundary are obtained by the orthogonality condition (36). On com-
puting the scalar product

(
δQT SAT�

)
0, substituting (41) for δq2 and δq3 and collecting like terms, one obtains

the following equation:
(
δQT SAT�

)
0

= −
[
2γ (γ − 1)et +

(
−2 + γ − γ 2

)
u2
] [

2ψ1 + 2etγψ3 + u (2ψ2 − u(γ − 1)ψ3)
] δq1

4u
. (42)

Since the variation δq1 must be left unspecified, the only way one can make the product vanish is to assume its
coefficient goes to zero. That assumption gives rise to the following boundary condition, to be imposed on the
adjoint PDE at a subsonic entrance

ψ1 =
[
(γ − 1)u2

2
− etγ

]
ψ3 − uψ2. (43)

It is worth noting that, on imposingψ1 = ψ1(ψ2, ψ3), one is effectively constraining one degree of freedom (DOF),
which corresponds to the adjoint characteristic that runs into the flow domain. Two remaining DOFs are preserved,
and they correspond to the two characteristics that convey information from the domain to the entrance boundary.

Adjoint boundary conditions for the subsonic exit are derived in a similar way. The physical boundary condition
implies that the static pressure, alone, be specified at the subsonic exit. On casting the static pressure (11) in terms
of the qi , it reads

P = (γ − 1)

(
q3 − q2

2

2q1

)
. (44)

The corresponding variation is given by

δP = (γ − 1)

2

(
2δq3 − 2uδq2 + u2δq1

)
. (45)

Then, on imposing δP = 0 on the above equation and on solving it for δq3 in terms of δq1 and δq2, one gets

δq3 = uδq2 − u2

2
δq1, (46)
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Table 1 Summary of boundary conditions for the adjoint equation (29)

Flow direction Regime State vector variation δQ Co-state vector � boundary conditions

Entrance Subsonic δq2(δq1), δq3(δq1) Eqs. 41 ψ1(ψ2, ψ3) Eq. 43
Supersonic δqi = 0 no b.c. on ψi

Exit Subsonic δq3(δq1, δq2) Eq. 46 ψ1(ψ3), ψ2(ψ3) Eqs. 48
Supersonic δqi are free ψi = 0

where both δq1 and δq2 are not specified. Equation (46) gives the realizable δQ and the corresponding δF that rep-
resent the subsonic exit boundary condition. On computing the scalar product between the latter and�, substituting
(46) for δq3 and collecting like terms, it yields(
δQT SAT�

)
l
=
[
2 (ψ1 + etγψ3 + 2uψ2)+ (3 − γ )u2ψ3

] δq2

2
+ [−2 (etγψ3 + uψ2)+ (γ − 2)uψ3

] uδq1

2
.

(47)

Since δq1 and δq2 are free, the only way to meet the orthogonality condition is to assume their coefficients are zero.
On doing so, one gets a set of two equations on the ψi . On solving the set for ψ1 and ψ2 in terms of ψ3, it yields

ψ1 =
[
γ et − (γ − 1)u2

2

]
ψ3, ψ2 =

[
(γ − 2)u

2
− γ et

u

]
ψ3. (48)

Similar to (43), the above relations represent the adjoint boundary conditions to be imposed at the subsonic exit
boundary. They constrain two DOFs, which correspond to the two adjoint characteristics that run into the flow
domain. One remaining DOF is preserved, and it corresponds to the single characteristic that conveys information
from the domain to the exit boundary. Table 1 summarizes the above results, and presents the adjoint boundary
conditions that correspond to each flow regime.

4 Inverse design application

Given the general structure of the adjoint equation (29), one may illustrate the above results with a simple inverse-
design application. The measure of merit is defined as the mean square error of the actual pressure distribution P
with respect to a target distribution PD

I = 1

2

l∫

0

(P − PD)
2 dx . (49)

The integrand of functional (49) yields the following gradient with respect to the state variables Q:

∂g

∂Q
= (P − PD) (γ − 1)

⎛
⎝

u2

2−u
1

⎞
⎠ . (50)

This expression gives rise to the non-homogeneous term of the adjoint PDE (29). Moreover, it can be shown that
g is not a homogeneous function of degree one on Q. According to (34), it implies that the ψi derivatives should
undergo jump discontinuities through a shock wave, and these should meet the relation(
∂�

∂x

∣∣∣∣
T

+
− ∂�

∂x

∣∣∣∣
T

−

)
· (SF)+ = 1

2

[
P2 − P2

D

]+
− . (51)

If the geometry of the nozzle can be cast in the generic form S = S(x; ak), for k = 1, . . . , n, and � satisfies
(29). Then the sensitivity gradient is obtained directly from (26),

∂ I

∂ak
=
[

FT ·� ∂S

∂ak

]l

0
−

l∫

0

[
FT · ∂�

∂x

∂S

∂ak
+ HT ·� ∂S′

∂ak

]
dx . (52)
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On picking a particular family of functions to represent S(x; ak), say polynomials, one is able to evaluate the
derivatives ∂S/∂ak in closed form.

In any case, the adjoint PDE is solved on the basis of a steady converged solution to the Euler equations, so that
all of its coefficients are known beforehand and remain constant throughout the solution of the adjoint equation.
The inverse-design application comprises a sequence of: flow simulation for a given geometry, adjoint solution,
evaluation of the sensitivity gradient and the procedure of gradient-based optimization. The last step leads to a new
geometry and, thus, closes the cycle. The cycles are repeated until a local extremum of the measure of merit is
reached, within a prescribed accuracy level.

4.1 Analytic solutions

Before turning our attention to the actual applications, it is instructive to consider analytic solutions to a few par-
ticular cases, since that would provide a necessary validation test. Giles and Pierce [39] have proposed a very
elegant approach to the analytic adjoint solutions. It is based on the Green’s function and relies on an extensive
investigation those authors have conducted on the properties of the adjoint equations, their duality and solution
behavior [11,45,52]. For the sake of space, this section brings only a brief summary of the relevant material. The
reader is referred to the original paper [39] for further details.

The co-state variables are computed directly by means of Eq. 3.2 from [39, p. 332]. In our notation and sign
convention that equation becomes:

�T = − (
δ I1(ξ)|δ I2(ξ)|δ I3(ξ)

) · ( f1(ξ)| f2(ξ)| f3(ξ)
)−1

. (53)

Here the fi (ξ) represent three linearly independent source vectors, each corresponding to a different mode of
perturbation to the flow solution. Together, these modes comprise a set of small disturbances: in the specific-mass
flow rate (m ≡ ρu) at constant stagnation enthalpy (ho) and stagnation pressure (Po); in ho at fixed Po and Mach
number (M); and in Po at constant ho and M—in short, δm|ho,Po , δho|Po,M and δPo|ho,M , respectively. The δ Ii (ξ)

represent the effect of each perturbation mode on the objective functional, and the inverse matrix in (53) is given
by:

(
f1(ξ)| f2(ξ)| f3(ξ)

)−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

P + ρu2

2P

−ρu

P

P + ρu2

2Pho

−ho

Sρu
0

1

Sρu
−u Po

2P S

Po

P S

−u Po

2P Sho

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (54)

Two cases are considered here, for the purpose of verifying the adjoint boundary and internal conditions: the
supersonic flow, and the shocked flow. The former was specifically designed to test the corresponding adjoint
boundary conditions (Table 1). Whereas the latter allows for checking two sets of conditions: those pertaining to
the subsonic boundaries, and the ones that are imposed on the shock-wave.

The supersonic flow case, with (49) for the measure of merit, implies that the perturbation modes δ Ii (ξ) are
given by simple integrals.
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δ I1(ξ) = ∫ l
ξ

1

S

∂g

∂m

∣∣∣∣
ho,Po

dx = − ∫ l
ξ

(P − PD)u

S(1 − M2)
dx

δ I2(ξ) = ∫ l
ξ

∂g

∂ho

∣∣∣∣
Po,M

dx = 0

δ I3(ξ) = ∫ l
ξ

∂g

∂Po

∣∣∣∣
ho,M

dx = ∫ l
ξ

(P − PD)P

Po
dx

, (55)

where, as is pointed out by Giles and Pierce [39], the zero result for δ I2 reflects the fact that the pressure is constant
at fixed M and Po.
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The shocked flow case also involves Eqs. 53 and 54, and the δ Ii (ξ) involve integrals that are similar to those in
(55). However, the limits of integration change and the perturbation modes are evaluated in a quite different fashion.
For the sonic condition at the throat and the presence of a shock wave must be accounted for. The latter entails a
displacement of the shock front, δxs , which is given by Eq. 7.1 from [39, p. 337].

c2 = c1 f (M1)+ Po1 f ′(M1)

[
dM

dx
δxs + a1

S

∂M

∂m

∣∣∣∣
ho,Po

]

x−
s

, (56)

where the quantity f (M1) represents the ratio between stagnation pressures on the upstream (x−
s ) and downstream

(x+
s ) sides of a normal shock wave: f (M1) = Po2/Po1. Expressions for the derivatives ∂M/∂m|ho,Po and f ′(M1)

are also obtained from normal shock relations:

∂M

∂m

∣∣∣∣
ho,Po

= M

m

{
1 + [

(γ − 1)/2
]

M2

1 − M2

}
, (57)

f ′(M1) = −4γ
(
M2

1 − 1
)2

2(γ + 1)M1 + (
γ 2 − 1

)
M3

1

{
(γ + 1)2 M2

1[
2 + (γ − 1)M2

1

] [
1 + γ

(
2M2

1 − 1
)]
} γ
γ−1

. (58)

The flow domain is divided into three portions for estimating the first perturbation mode δ I1(ξ). In each one of
them, the functional variation is given by a different expression:

a. From the entrance section to the nozzle throat (xt ), 0 ≤ ξ < xt , δ I1(ξ) is given by Eq. (6.1) from [39, p. 338],

δ I1(ξ) = −
∫ ξ

0

1

S

∂g

∂m

∣∣∣∣
ho,Po

dx . (59)

b. From the throat section to the normal shock position (xs), xt ≤ ξ < xs , δ I1(ξ) is given by the integral [39, Sect.
7.2.1, p. 338]

δ I1(ξ) =
∫ xs

ξ

1

S

∂g

∂m

∣∣∣∣
ho,Po

dx +
∫ 1

xs

a2

S

∂g

∂m

∣∣∣∣
ho,Po

dx +
∫ 1

xs

c2
∂g

∂Po

∣∣∣∣
ho,M

dx − [g(V )]
x+

s

x−
s
δxs, (60)

and the coefficients a2 and c2 are obtained from the set
{

a2 + S m
Po

∣∣
x+

s
c2 = 1

−u
S(1−M2)

∣∣∣
1

a2 + P
Po

∣∣∣
1

c2 = 0
, (61)

where use was made of the fact that (∂m/∂Po|ho,M ) = m/Po. The shock-wave displacement, δxs , is estimated
by means of (56)–(58) with a1 = 1 and c1 = 0.

c. From the shock-wave position to the exit section, xs ≤ ξ ≤ 1, δ I1(ξ) is given by [39, Sect. 7.2.2, p. 339]

δ I1(ξ) =
∫ ξ

xs

a2

S

∂g

∂m

∣∣∣∣
ho,Po

dx +
∫ 1

ξ

a3

S

∂g

∂m

∣∣∣∣
ho,Po

dx +
∫ 1

xs

c
∂g

∂Po

∣∣∣∣
ho,M

dx − [g(V )]
x+

s

x−
s
δxs, (62)

where the coefficients a2, a3 and c satisfy the set
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a3 − a2 = 1

+ a2 + S m
Po

∣∣
x+

s
c = 0

−u
S(1−M2)

∣∣∣
1

a3 + P
Po

∣∣∣
1

c = 0

, (63)

and δxs is given by (56)–(58) as usual, but now with a1 = c1 = 0.

As in the supersonic flow case, the second perturbation mode is identically zero throughout the whole domain,
δ I2(ξ) = 0, [39, Sect. 7.3, p. 339]. The third perturbation mode δ I3, on the other hand, requires that the nozzle be
divided into two portions:
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a. From the entrance section to the shock wave position, 0 ≤ ξ < xs , δ I3 is given by [39, Sect. 7.4.1, p. 340]

δ I3(ξ) =
∫ 1

xs

a2

S

∂g

∂m

∣∣∣∣
ho,Po

dx +
∫ xs

ξ

∂g

∂Po

∣∣∣∣
ho,M

dx +
∫ 1

xs

c2
∂g

∂Po

∣∣∣∣
ho,M

dx − [g(V )]
x+

s

x−
s
δxs, (64)

with the coefficients a2 and c2 as given by the set

⎧⎨
⎩

a2 + S m
Po

∣∣
x+

s
c2 = S m

Po

∣∣
x−

s

−u
S(1−M2)

∣∣∣
1

a2 + P
Po

∣∣∣
1

c2 = 0
, (65)

and δxs is obtained from (56)–(58) with a1 = 0 and c1 = 1.
b. Finally, from the normal shock position to the exit section, xs ≤ ξ < 1, δ I3 is given by [39, Sect. 7.4.2, p. 340]

δ I3(ξ) =
∫ 1

xs

a

S

∂g

∂m

∣∣∣∣
ho,Po

dx +
∫ ξ

xs

c2
∂g

∂Po

∣∣∣∣
ho,M

dx +
∫ 1

ξ

c3
∂g

∂Po

∣∣∣∣
ho,M

dx − [g(V )]
x+

s

x−
s
δxs, (66)

where a, c2 and c3 are given by the set

⎧⎪⎨
⎪⎩

+ c3 − c2 = 1
a + S m

Po

∣∣
x+

s
c2 = 0

−u
S(1−M2)

∣∣∣
1

a + P
Po

∣∣∣
1

c3 = 0
, (67)

and the shock-wave displacement is determined by (56)–(58) with a1 = c1 = 0.

For our purposes, the most important feature of the rationale outlined above is that it does not formulate adjoint
boundary conditions explicitly. Instead, it imposes boundary and realizability conditions on the flow-field perturba-
tions [39]. Then the behavior of the adjoint variables at the boundaries becomes an implicit result of those conditions,
and the same holds true for their behavior across the shock wave. That is an essential difference between Giles and
Pierce’s approach and ours. Yet, in principle, the adjoint solutions are expected to agree. For both approaches rely
on the central concept of realizable flow-field variations.

In what follows, the analytical solutions to the supersonic and the shocked transonic cases will be presented along
with the corresponding numerical ones, for comparison. They should enable one to verify the adjoint boundary and
internal conditions, and also provide a means of assessing the accuracy of the numerical method.

4.2 Numerical solutions

A single piece of code was written to tackle the whole procedure. The Euler equations are explicitly integrated by a
split-flux algorithm that is based on the Modified Steger–Warming method. The method was chosen for providing
the right amount of numerical dissipation at shock waves, so as not to interfere significantly with the convergence
of the adjoint solution. Owing to the linearity of the adjoint problem and the lack of a physical flux definition,
the method of choice for solving that PDE was the implicit Beam and Warming three-point backward scheme.
Artificial dissipation was later added to that scheme, so as to give it greater stability [49, Sect. 18.1], [53]. The
conjugate-gradient algorithm was picked as the optimization method [54, Chap. 3].

It must be noted that the code does not enforce continuity of the ψi , strictly, across shock waves. Instead,
condition (22) comes out as a result of the numerical scheme and, in particular, its artificial dissipation, as in a
“shock-capturing” approach. The behavior of the first derivatives of ψi through the wave front—Eqs. (34) and
(51)—is likewise determined by the numerical solution alone.

For the purpose of comparison, a program was dedicated to computing the sensitivity gradient by brute force,
over the same search path that had been pursued by the adjoint. To that end, each control parameter is per-
turbed separately about its original value in the baseline configuration. The gradient is evaluated by a central
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Fig. 2 Supersonic flow through a conical nozzle. Adjoint-equation solutions: Left, first cycle solution, analytic, ψi(a), and numerical,
ψi . Right, last cycle numerical solution, ψi . Numerical solutions on both sides: dash–dot green line, ψ1; dashed blue line ψ2; solid
red line ψ3. Analytic solutions on the left: ψ1(a), black line; ψ2(a), cyan line; ψ3(a), magenta dash–dot line (see online version for the
colors)

finite-difference scheme to second-order accuracy. Two perturbed flow simulations are needed for each parameter,
in addition to the baseline solution.

A number of test results is shown below, with the aim of illustrating the adjoint boundary and internal condi-
tions. In all cases the target PD is taken as the actual pressure distribution of a specific geometry, under given flow
conditions. Although unusual in actual applications, the procedure ensures two essential features of the validation
tests: not only is the target realizable, but its geometry is known beforehand. For simplicity, S(x; ak) is chosen as
a second-order polynomial with three control parameters (a0, a1, a2).

For all the inverse-design applications, accuracy levels have been set to the same value, for flow and adjoint solu-
tions alike: convergence required the discretized equations residue to fall below 10−5 in magnitude. Both solvers
have also made use of the same uniform mesh with 403 points—including ghost cells at the boundaries. On the other
hand, the validation of our approach hinges on comparing numerical with analytical results. To that end, numerical
adjoint solutions to the supersonic and transonic cases are plotted along with the corresponding analytical solutions
in Figs. 2–left and 5–left, respectively.

A preliminary convergence study was also conducted. It has involved additional simulations of those cases on
a finer uniform mesh with 603 points, while the accuracy levels were raised to 10−7. Further tests have also been
performed on two coarser meshes, one with 103 points and the other with 203. Accuracy levels were set to 10−5

for both cases. In view of the large variations in magnitude the ψi undergo, besides the occurrence of zeros and
singularities, it seems more appropriate to estimate the numerical solutions relative error as

εi =
∣∣∣∣∣

ψi − ψi(a)

max
(
ψi(a)

)− min
(
ψi(a)

)
∣∣∣∣∣ ; (68)

here the ψi(a) represent the analytical solutions for each adjoint variable, and ψi stand for the corresponding
numerical results. The εi profiles are plotted in Figs. 3–left, 6–left and 7–left.

4.2.1 Supersonic case

The first set of results concerns the case of a diverging nozzle, under the following entrance boundary conditions2:
Po = 15.65, To = 3.6 and M = 2.0. The flow is supersonic throughout its length and, hence, the adjoint PDE

2 Dimensionless stagnation properties are scaled to a reference state.
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Fig. 3 Supersonic flow through a conical nozzle. Left, numerical adjoint solution relative error εi : dashed lines, coarse mesh (403 pts.);
solid lines, fine mesh (603 pts.); ψ1, green; ψ2, blue; ψ3 red. Right, gradient magnitude evolution: solid line, adjoint method; dash–dot
line, brute force

is only subject to homogeneous boundary conditions at the nozzle exit (Table 1). The results were achieved in 18
inverse-design cycles.

Figure 2 shows the first and last solutions to the adjoint PDE—left and right sides, respectively. All � compo-
nents are given by smooth continuous functions that meet the homogeneous boundary condition at the domain exit.
Besides, a comparison of both sides indicates that the ψi magnitude decrease as the minimum of I is approached.
That is an intrinsic feature of the inverse-design applications, where a complete convergence should lead to a trivial
solution to the adjoint PDE.

In particular, Fig. 2–left compares the analytic and numerical solutions on the 603 points mesh. It presents an
excellent agreement between them. Indeed, Fig. 3–left shows that the relative error profiles εi of the latter remain
below 2×10−3 throughout the domain (solid lines). On the other hand, the coarser-mesh solutions incur consistently
larger errors: the 403 points mesh maximum error (dashed lines) is about 3 × 10−3, the 203 and the 103 points
meshes (not shown here) lead to maximum errors of 6×10−3 and 1.2×10−2, respectively. Hence, the results seem
to indicate the numerical solutions should recover the analytical ones, as the accuracy level is increased.

The evolution of the sensitivity gradient is depicted in Fig. 3–right, which presents its magnitude. For the first
four cycles, the gradient was also evaluated by brute force. A comparison between these and the adjoint results
shows a maximum error of less than 0.004%—which is also an important part of the validation procedure. Figure 4
presents the geometry changes and the corresponding pressure distributions. For clarity, though, only the first, the
last and the target profiles are shown.

Although the pressure distribution approaches PD and the final geometry is parallel to that of the target, they
are not coincident. The result implies the method has reached a local minimum of Eq. 49, which corresponds to
a different mass-flow rate. However, such behavior could be anticipated, since the latter quantity has not been
constrained.

4.2.2 Transonic case

Next, results are shown of the second case, which concerns a converging–diverging nozzle under the following
boundary conditions: Po = 20.0 and To = 2.08 at the entrance, and the static back pressure Pb = 15.0. The results
were obtained after 50 inverse design cycles. However, in this case the nozzle-throat area has been constrained to
a fixed value, so as to limit the maximum mass-flow rate. The minimum area was imposed as an external con-
straint, by a relation among control parameters. The procedure was designed so as not to interfere with the gradient
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Fig. 4 Supersonic flow through a diverging nozzle. Left, geometry changes. Right, pressure evolution. Dashed lines, original curves;
solid lines, final results; dash–dot lines, target profiles
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computation, but to change the search direction, only. The target pressure distribution PD has been set for subsonic
isentropic flow, which is feasible within the active constraints.

Figure 5 depicts the adjoint solutions in the first and last cycles—left and right sides, respectively. In this case,
the first-cycle flow solution has a shock wave in the divergent portion of the nozzle (see Fig. 8–right), which implies
that the throat flow is choked. Indeed, the first adjoint solution (Fig. 5–left) exhibits the characteristic singularity at
the throat, as reported in the literature [39,52] and mentioned above.

A comparison between analytic and numerical adjoint solutions of the first inverse-design cycle is presented in
Fig. 5–left, and it corresponds to the shocked-transonic flow. Here again, both solutions refer to the 603 points mesh.
The relative error profiles εi are shown in Fig. 6–left for the domain as a whole, and in Fig. 6–right for the region
between the shock front and the nozzle exit.

As can be seen, all εi spike at the throat region, 0.3 ≤ x ≤ 0.45, for both solutions alike. In the remainder
of the domain, though, the error in the coarser mesh (403 pts.) is bounded below 2 × 10−2, while in the finer
mesh (603 pts.) the error remains below 2.5 × 10−3. At the boundaries, εi ≤ 8 × 10−3 in the coarser mesh, while
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Fig. 7 Transonic flow through a convergent–divergent nozzle. Left, discontinuities in ∂�/∂x at the first inverse-design cycle. In refer-
ence to Eq. 51: solid line, (∂�/∂x)T · (SF); dashed line, g(V) = (P2 − P2

D)/2. Right, gradient magnitude evolution: solid line, adjoint
method; dash–dot line, brute force

εi ≤ 1.2 × 10−3 in the finer mesh. In particular at the shock wave, Fig. 6–left, the former shows εi ≤ 1.6 × 10−2,
whereas in the latter εi ≤ 2.5 × 10−3. As for the two coarsest meshes (103 and 203 pts.), within the intervals
0 ≤ x < 0.3 and 0.45 < x ≤ 1, the error remains below 0.35 for the former and 0.30 for the latter. Such
a consistent accuracy improvement with mesh refinement seems to indicate that the numerical solutions should
indeed recover the analytical ψi(a). Furthermore, it fully verifies the present formulation of the adjoint boundary
and internal conditions.

On the other hand, � does not seem to undergo any noticeable slope discontinuity at the shock location. The
whole picture changes when one evaluates the terms in relation (51), which are plotted in Fig. 7–left. There one
clearly sees that both the derivative of� (solid line) and the pressure square difference (dashed line) undergo finite
jumps at the location of the shock wave, precisely. Furthermore, the jumps appear to have the same strength, within
the accuracy of these estimates: the former is about 73.58, whereas the latter is about 74.43. It must be noted that
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Fig. 8 Transonic flow through a convergent–divergent nozzle. Left, geometry changes. Right, pressure evolution. Dashed lines, original
curves; solid lines, final results; dash–dot lines, target profiles

the term ∂�/∂x shows another discontinuity in Fig. 7–left, but this one is a direct result of the �-singularity at the
nozzle throat.

As the cycles progress and the solution approaches PD , the flow becomes fully subsonic, the mass-flow rate
drops from its limiting value, the ψi become smooth functions (Fig. 5–right) and their magnitude also drops off. As
with the previous case, the adjoint equations are subject to the same boundary conditions throughout the process.
Only, in this case they concern subsonic as opposed to supersonic flow.

The evolution of the sensitivity gradient is shown in Fig. 7–right. Here again, the gradient has also been estimated
by brute force, at the same points as the adjoint method. A comparison between the two reveals the error of the
latter with respect to the former method remains below 4.5%, which certainly is much larger than, the previous
case. However, that may be attributed to the fact that the subsonic adjoint boundary conditions involve solving
characteristic equations which incur numerical error. The supersonic ones reduce to simple homogeneous Dirichlet
conditions at the domain exit.

Lastly, geometry changes and the corresponding pressure distributions are depicted in Fig. 8 left and right sides,
respectively. There, it can be seen that the final geometry gets closer to the target, as the pressure distribution
approaches PD .

4.3 A homogeneous functional of degree one

Still in regard to the behavior of the adjoint variables through a shock wave, it is instructive to consider an alter-
native measure of merit. Equation 34 shows that any objective functional, which is homogeneous of degree one
with respect to the state variables Q, should lead to smooth ψi of class C1. Such a functional would make for an
illustrative comparison with the previous case of (51) and Fig. 7–right. Then, it should be interesting to pick the
same pressure integral as used by Giles and Pierce [39,45].

I =
∫ l

0
P dx, (69)

for which the integrand yields the gradient

∂g

∂Q
= (γ − 1)

⎛
⎝

u2

2−u
1

⎞
⎠ . (70)
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As before, the expression corresponds to the non-homogeneous term of the adjoint PDE (29). However, in this
case it can be seen that g(Q) is an homogeneous function of degree one and, as a result, the ψi -derivatives should
undergo no jumps through the shock wave. That is, they should meet the condition
(
∂�

∂x

∣∣∣∣
T

+
− ∂�

∂x

∣∣∣∣
T

−

)
· (SF)+ = 0, (71)

which implies continuity, given that the flux (SF) through the shock wave is obviously non-zero.
A test was set up where the adjoint solution is computed for the objective functional (69), in the same original

geometry and under the same conditions as the converging–diverging nozzle above. The results thus obtained are
presented in Fig. 9, and they should be compared to those of the first cycle in the previous case.

On the left, Fig. 9 presents the solution for ψi , which should be compared to Fig. 5–left. On the right it depicts
the term (∂�/∂x)T · (SF) and the pressure distribution—the latter picture should be compared to Fig. 7–right.

At a first glance, Figs. 5–left and 9–left show both solutions share similar features, such as the throat singu-
larity at the same position—although the ψi signs have changed. However, a closer look reveals the solutions
behave differently through the shock wave, which is at the same position for both. In the latter case (Fig. 9–
left) the ψi cross the shock wave smoothly with zero slope, as opposed to the non-zero angles that appear in
former.

As expected, the results on Fig. 9–left corroborate the findings that are presented in [39,45] for the same objective
functional (69). The assertion becomes clearer on Fig. 9–right. There it can be seen the first derivatives of � are
continuous, and reach zero at the shock-wave location (solid line). Whereas the integrand of the objective functional
g(V) undergoes a finite jump at that point (dashed line). It is quite a different picture from Fig. 7–right, where both
the derivatives of� and g(V) experience jumps of the same magnitude, within the results accuracy. These findings,
in turn, seem to confirm the analysis of (34), which relates the nature of the objective functional to the behavior of
the adjoint variables through a shock wave.

5 Conclusions

The primary objective has been to investigate the adjoint boundary and internal conditions. Two main aspects
of the topic have been given special attention, namely: (1) the relation between the primal and dual problems,

123



22 E. V. Volpe, L. C. de Castro Santos

and (2) the well-posedness of the latter. In particular, with respect to internal conditions, the idea was to address a
question that is still subject to debate in the literature.

A novel approach to the problem has been proposed, which is geared toward achieving those specific purposes.
It consists in seeing the adjoint variables as generalized constraint forces, which impose realizability conditions on
flow-physics variations. Within that framework, the terms that give rise to boundary conditions amount to inner
products, which only vanish when the adjoint variables are orthogonal to all allowable variations—the latter are
viewed as virtual displacements in the system’s state-space. In principle, this rationale ensures that the adjoint
problem should be well-posed, as long as the primal problem is well-posed.

As for the internal condition, the need for imposing the adjoint-variables’ continuity through a shock-wave is
verified. That result certainly confirms Giles and Pierce’s assertions on the subject. However, our findings also make
it clear that the adjoint-solution behavior through the shock front depends on the nature of the objective functional.
There, the solution can only remain continuous up to the first derivative for a specific class of functionals, i.e.,
those that are homogeneous of degree one with respect to the state variables. Objective functionals that lack this
property will give rise to a discontinuity in the gradient of the adjoint variables at the shock position, precisely.
The discontinuity strength is determined by the non-homogeneous term of the adjoint equation. That term, in turn,
comes from the variation of the objective functional kernel with respect to state variables.

These claims have been verified by comparing the results, thus obtained, with corresponding analytical solutions
to the adjoint equations. The comparison was made possible, because the latter solutions are currently available in
the literature for the quasi-1D Euler flow. Complete inverse-design applications have also been developed, so as to
validate the procedure as a whole.

Further research into the topic seems to indicate this approach can be extended to a more general context. That
involves 2 and 3–D applications, besides more complex fluid-dynamics models—such as the time-dependent Euler
flows. The full Navier–Stokes equations could also be investigated in the light of these ideas. However, in that
case one must account for the changes the diffusion mechanism brings about in the momentum and energy contour
problems. In addition, it would be of great interest to consider how the adjoint-variables behavior through shock
waves could be used to advantage in mesh refinement and error-control applications.

Acknowledgements The second author would like to acknowledge the support of FAPESP grants 97/01229–7 and 99/03105–9 which
were pivotal in the development of this research paper.
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